
Tetrahedron Letters 48 (2007) 4849–4853
A short synthesis of highly substituted furans from alkenyl
aryl ketones with dichloromethyl phenyl sulfoxide
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Abstract—Two-step synthesis of 2-aryl-5-(phenylsulfanyl)furans was achieved starting from alkenyl aryl ketones and dichloro-
methyl phenyl sulfoxide. The phenylsulfanyl group was successfully converted to other functional groups, via sulfinyl group, to give
highly substituted 2-arylfurans in good overall yields.
� 2007 Elsevier Ltd. All rights reserved.
Furans are obviously one of the most important com-
pounds in organic and synthetic organic chemistry. Fur-
an moiety was frequently found as the skeletal structure
of natural products, such as furano-terpenes, in the
plant kingdom.1 Furan is a relatively highly reactive het-
eroaromatic compound and is frequently used as an
intermediate in organic synthesis.2 In view of the impor-
tance of furans in organic chemistry many procedures
for their synthesis have been reported;3 however, new
methods for their synthesis are still very much desired.

Over this decade, we have been interested in the develop-
ment of new synthetic methods utilizing sulfoxides
having a chlorinated alkyl group as a ligand.4 As an
extension of this study, we recently investigated for
developing a new synthetic method using dichloro-
methyl phenyl sulfoxide, and a new procedure for a
short synthesis of highly substituted furans was achieved
(Scheme 1).

The essence of the procedure presented in this Letter is
as follows. Thus, conjugate addition of the lithium carb-
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anion of dichloromethyl phenyl sulfoxide to alkenyl aryl
ketones 1 gave adduct 2 in high yield. The adduct was
treated with trifluoroacetic anhydride (TFAA) in the
presence of sodium iodide to give 2-aryl-5-(phenylsulfan-
yl)furan 3 in good yield. As the synthetic method for 2-
thio-substituted furans is quite limited,5 this is a good
procedure for the synthesis from alkenyl aryl ketones 1
in only two steps.

The phenylsulfanyl group was oxidized to give a sulfox-
ide, which was treated with isopropylmagnesium
chloride to afford 2-magnesiofuran via sulfoxide–
magnesium exchange reaction. Finally the 2-magne-
siofuran was treated with electrophiles to afford tri- or
tetra-substituted furans 4 in good overall yield.

Details of this procedure are reported using 1-phenyl-2-
buten-1-one 5 as an example (Scheme 2). To a solution
of lithium carbanion of dichloromethyl phenyl sulf-
oxide6 in THF in the presence of HMPA at �78 �C was
added a solution of 5 in THF and the reaction mixture
was stirred for 2 h to give adduct 6 in quantitative yield
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Scheme 3. A plausible mechanism for the reaction of 6 with TFAA–NaI giving furan 7.
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as a mixture of two diastereomers.7,8 Adduct 6 was then
treated with 5 equiv of TFAA in acetonitrile in the pres-
ence of 5 equiv of NaI at room temperature overnight.
The starting material disappeared and from this rather
clean reaction mixture, 4-methyl-2-phenyl-5-(phen-
ylsulfanyl)furan 7 was obtained in 89% yield.9

The mechanism of this reaction is thought to be the
Pummerer-type reaction10 which is as follows (Scheme
3). At first, the reaction of sulfoxide 6 with TFAA gives
an acyloxysulfonium ion A. The iodide anion attacks the
chlorine atom to afford thionium ion B. The thionium
ion is attacked by the oxygen atom of the carbonyl
group5d to give cyclic oxonium ion C, from which the
hydrogen at the b-position is picked up by the trifluoro-
acetate anion to afford dihydrofuran derivative D. As
the elimination of HCl from intermediate D gives the
aromatic compound, it would take place easily to give
furan 7.

In order to investigate the generality of this reaction,
first, the conjugate addition of lithium a-sulfinyl carban-
ion of dichloromethyl phenyl sulfoxide and several a,b-
unsaturated carbonyl compounds was carried out, and
second, the adducts were treated with TFAA–NaI as
mentioned above. The results are summarized in Table
1.

The conjugate addition of all the investigated a,b-unsat-
urated carbonyl compounds gave adducts 9 in high to
quantitative yields. Sodium hydride was found to be a
better base for the addition reaction of a,b-unsaturated
ester and amide (entries 8 and 9). Treatment of adduct 9
with TFAA–NaI was carried out under the same condi-
tions as described above and the results are summarized
in Table 1. Interestingly, the adducts derived from alke-
nyl aryl ketones gave the desired furans 10 in good yields
except two examples (entries 1–6). When the adduct has
alkyl group (methyl group) as R, entry 7, the reaction
did not give the desired furan. The adducts derived from
a,b-unsaturated ester and amide (entries 8 and 9) also
did not give the expected furans but gave a complex mix-
ture. From these results, the enolizability of ketone 9
(the acidity of the hydrogen at the a-position)11 is
thought to be quite important in this furan synthesis.

Table 2 shows the results for the synthesis of tri- and
tetra-substituted furans 13 starting from several alkenyl
phenyl ketones 11 via adducts 12. As shown in the table,
all adducts 12 were obtained under the same conditions
as described above in 62–99% yields. The formation of
furans 13 proceeded in good to excellent yields except
one example (entry 3). In this case, the starting material
did not disappear under the reaction conditions, and
58% yield of the starting material was recovered.

The phenylsulfanyl group in the produced furans could
be used for further introducing functional groups. Thus,
sulfoxide–metal exchange reaction12 of the correspond-
ing 2-sulfinylfuran would afford the corresponding 2-
lithio- or 2-magnesiofuran, which could be trapped with
several electrophiles to afford new furan derivatives. We
investigated this idea and the preliminary results are
summarized in Table 3.



Table 2. Synthesis of 2-phenyl-5-(phenylsulfanyl)furans 13 from enones 11 through the adducts 12
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THF,  -78 °C

11 12 13
overnight

Entry 11 Yield (%)

R1 R2 12 13

1 H n-Pr 93 88
2 H i-Pr 72 83
3 H Ph 62 41a

4 Me H 99 61
5 Me Me 91 72
6 Me n-Pr 91 99

a Starting material was recovered in 58%.

Table 3. Synthesis of tri- and tetra-substituted furans 16 from 2-phenyl-5-(phenylsulfanyl)furans 13 via 2-magnesiofurans 15 derived from sulfoxides
14 with i-PrMgCl
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b R1=Me, R2=Me
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Entry R1 R2 i-PrMgCl (equiv) Electrophile (equiv) Yield (%) 16

1 H Me 1.8 CH3OH Excess 88 (E = H)
2 H Me 1.8 ClCOOEt 3.0 59 (E = COOEt)
3 H Me 1.8 ClCOPh 3.0 69 (E = COPh)
4 Me Me 3.0 ClCOOEt 5.0 63 (E = COOEt)
5 Me Me 3.0 ClCOPh 5.0 57 (E = COPh)

Table 1. Synthesis of 2-(phenylsulfanyl)furans 10 from enones 8 through the adducts 9
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Entry 8 Conditions Yield (%)

R R1 R2 9 10

1 Phenyl H Me LDA, HMPA (1.2 equiv), �78 �C 99 89
2 1-Naphthyl H Me 70 83
3 p-Methoxyphenyl H Me 99 25
4 p-Tolyl H Me 94 51
5 p-Fluorophenyl H Me 99 71
6 2-Thienyl H Me 92 36
7 Me Me Me 90 Complex mixture
8 t-BuO H H NaH (2 equiv), 0 �C to rt 94 Complex mixture
9 Me2N H H 99 Complex mixture
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At first, furans 13a and 13b were oxidized to the corre-
sponding sulfoxides 14a and 14b, respectively, in almost
quantitative yields. Sulfoxide 14a was treated with
1.8 equiv of isopropylmagnesium chloride in THF at
�78 �C (2-magnesiofuran intermediate 15 was gener-
ated) and the reaction was quenched with methanol to
afford 4-methyl-2-phenylfuran (Table 3, entry 1) in
88% yield. The intermediate was treated with ethyl
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chloroformate and benzoyl chloride to give ethoxycar-
bonylated and benzoylated furans, respectively (entries
2 and 3), in moderate to good yields.13 A similar treat-
ment of 14b gave tetra-substituted furans (entries 4
and 5) in about 60% yield.

In conclusion, we have developed a new synthetic meth-
od for 2-aryl-5-(phenylsulfanyl)furans from alkenyl aryl
ketones with dichloromethyl phenyl sulfoxide in only
two steps. By utilization of the sulfanyl group, the syn-
thesis of fully substituted 2-arylfurans was also
achieved. The procedure presented in this Letter will
contribute to the synthesis of highly substituted furans.
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